Induced Asymmetric Polymerisation of Optically Active Vinyl Sulphoxide

Fumio Toda* and Koji Mori

Department of Industrial Chemistry, Faculty of Engineering, Ehime University, Matsuyama 790, Japan

Induced asymmetric polymerisation of optically active m-tolyl vinyl sulphoxide was achieved by BuⁿLi or BuⁿMgBr at -78 °C.

In spite of a great deal of effort, all attempts at polymerisation and induced asymmetric polymerisation of optically active vinyl sulphoxide have failed. 1,2 Only a copolymerisation of vinyl sulphoxide and styrene in low yield has been reported. We now report the first example of an induced asymmetric polymerisation of optically active m-tolyl vinyl sulphoxide (1a). †

Optically active (1a) was prepared according to the resolution method by complexation with optically active 2,2'dihydroxy-1,1'-binaphthol (5).3 For example, when a solution of racemic 2-chloroethyl m-tolyl sulphoxide (4) (10.1 g, 50 mmol) and (R)-(+)-(5) (7.15 g, 25 mmol) in benzene (60 ml) was kept at room temperature for 1 h, a 1:1 complex of (+)-(4) and (R)-(+)-(5) was obtained as colourless prisms $(10.98 \text{ g}, 90\%, [\alpha]_D + 72.5^{\circ}$). Two recrystallisations of the complex from benzene gave the complex of optically pure (+)-(4) (8.78 g, 72%, $[\alpha]_D$ +79.4°, m.p. 143—144 °C). Treatment of the complex with 10% NaOH gave optically pure (+)-(1a) by HCl elimination as a colourless liquid (2.78) g, 67%, $[\alpha]_D$ +486°), the optical purity of which was determined to be 100% by h.p.l.c. using a column containing an optically active solid phase, Chiralcel.§ Similar treatment with (S)-(-)-(5) of the filtrate left after the separation of the complex of (+)-(4a) and (R)-(+)-(5) finally gave optically pure (-)-(1a) (2.70 g, 65%, $[\alpha]_D$ -486°). A quick treatment of the complex of the optically pure (4) with 3% NaOH within 10 min gave optically pure (4) ($[\alpha]_D$ 252.8°) in about 65% yield, which upon further treatment with 10% NaOH gave optically pure (1a) by HCl elimination, quantitatively.

Rapid polymerisation of the optically active (1a) proceeds by treatment with BuⁿLi or BuⁿMgBr at -78 °C. For example, when a solution of BuⁿLi (19.2 mg, 0.3 mmol) in hexane (0.2 ml) was added to a solution of (+)-(1a) (1.0 g, 6 mmol) and (-)-sparteine (70 mg, 0.3 mmol) in toluene (10 ml) at -78 °C

CH=CH₂

$$0-S-:$$

$$0-S-:$$

$$0-S-:$$

$$0-S-:$$

$$0-S-:$$

$$0-S-:$$

$$0-S-C$$

$$0-S$$

Reagents: i, BuⁿLi or BuⁿMgBr; ii, H₂O₂.

under N_2 , polymerisation occurred immediately. The reaction mixture was kept for a further 30 min under the same conditions, and the precipitate formed was filtered, washed with MeOH, and dried to give the optically active polymer (2a) as a colourless powder (0.9 g, 90%, m.p. $105-107\,^{\circ}\text{C}$, $[\alpha]_D + 310^{\circ}$, $\bar{M}_n = 3500$, $\bar{M}_w = 4250$). Polymerisation using BunMgBr in diethyl ether gave almost the same result as that with BunLi. Although the $[\alpha]_D$ value of (2a) changed little on increasing the amount of (-)-sparteine, it decreased slightly when the polymerisation was carried out in the absence of the (-)-sparteine (Table 1). However, when (1a) contained a trace of water, polymerisation did not occur. The failure of all the attempted polymerisations of optically active p-tolyl vinyl sulphoxide (1b) by BunLi1 and BunMgBr2 is probably due to water contaminant.

The $[\alpha]_D$ value of the optically active polysulphone (3a) (m.p. $180-189\,^{\circ}$ C) obtained by oxidation of the optically active (2a) with H_2O_2 is shown in Table 1. The $[\alpha]_D$ value is attributed to the induced asymmetric polysulphone (3a) since the $[\alpha]_D$ value did not change on further oxidation, and since the polysulphone did not show any sulphoxide absorption peak in i.r. spectrum.

In c.d. spectra (EtOH), (+)-(2a) and (+)-(3a) showed positive bands at 248 and 258 nm, respectively, and negative bands at 222 nm in both cases. These c.d. spectra correspond

Table 1. The $[\alpha]_D$ (tetrahydrofuran, c 0.5) values of (2a) obtained by polymerisation of optically pure (+)-(1a) and (-)-(1a) by BuⁿLi at -78 °C under N₂ in the absence and presence of (-)-sparteine, and the $[\alpha]_D$ values of (3a) prepared by H_2O_2 oxidation of the (2a).

Molar ratio of Bu ⁿ Li: (-)-sparteine	$[\alpha]_{D}(^{\circ})$	
	(2a)	(3a)
1:0	+274 (-272)	+19 (-16)
1:1	+310 (-307)	+42 (-40)
1:10	+311 (-310)	+42 (-41)

[†] Satisfactory elemental analyses were obtained for all new compounds and polymers.

 $[\]ddagger$ All the $[\alpha]_{\rm D}$ values were measured in tetrahydrofuran (c, 0.5) at 25 °C.

[§] Available from Daicel Chemical Industries, Ltd, Himeji, Japan.

to those of the u.v. aborption of (+)-(2a) (224 and 248 nm) and (+)-(3a) (222 and 270 nm).

It is not clear whether the large $[\alpha]_D$ value of the optically active (3a) is attributed to its asymmetric carbons or its helicity, even though the $[\alpha]_D$ value of induced asymmetric polymethacrylate has been attributed to helicity. 4,5

Received, 15th April 1986; Com. 498

References

- 1 J. E. Mulvaney and R. A. Ottaviani, J. Poly. Sci. A, 1970, 8, 2293.
- 2 Y. Miura, M. Kinoshita, and M. Imoto, *Poly. Lett.*, 1971, **9**, 241. 3 F. Toda, K. Tanaka, and S. Nagamatsu, *Tetrahedron Lett.*, 1984, **25**, 4929.
- 4 Y. Okamoto, K. Suzuki, K. Ohta, K. Hatada, and H. Yuki, J. Am. Chem. Soc., 1979, 101, 4763.
- 5 D. J. Cram and D. Y. Sogah, J. Am. Chem. Soc., 1985, 107, 8301.